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Preface

The original research proposal, from which the work reported here is an outcome,

had as its objectives:

* The general quantification and understanding of the import for linear

elastic fracture mechanics of three-dimensional effects in crack/surface

intersection configurations, and in particular the determination of -

associated crack profiles that are critical in an LEFM sense.

* The development of two independent numerical approaches for the attendant

analysis, both of which to be sufficiently well adapted to the class of

problemns of concern so as to have high resolution; the two methods to be

used jointly initially so as to provide mutual confirmation but ultimately

being used separately to each's respective greatest effectiveness.

The extent to which the first objective has been met is summarized in the

abstract that follows immediately and described with greater detail and commen-

tary in the last of Section 4 and Section 5. The extent to which the second

objective has been fulfilled is apparent from Section 3, the first part of Sec-

tion 4 and the last AFOSR technical report filed. Both activities are placed in

perspective with other related contributions to the literature in the review in

Section 1. In sum, these various sources evidence a significant degree of success

in achieving the basic aims of the research program.

,....*, .- ,.- . . - -*-. ..... .. ... -. ". . .: ,.- .. .. -. . **... . . . . *. . ,° . . . . .
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Abstract

Several elastic configurations containing cracks under transverse

tension which intersect a free surface are investigated. In order to

ensure reliable results two independent numerical methods are employed

on a comparison problem, each method being tuned to handle the special

features involved. The comparison provides confidence in other results

- which focus on the key quantity in linear elastic fracture mechanics,

the energy release rate. These findings may be summarized as follows:

-that the decays in the energy release rates found as the free surface is

approached in the various problems treated are probably not significant

from a fracture toughness testing point of view and not of major consequence

in cyclic life calculations, although there are some indications that

this may not be the case if near-surface residual stress fields are present;

and that these variations in energy release rate can be compensated for by

relatively minor perturbations in crack-front profiles.

I

,%
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1. Introduction

During the past twenty-five years linear eZastic fracture mechanics (LEFM)

has emerged as the technology whereby the engineer predicts fast fracture in

brittle instances and tracks cyclic crack growth even in some ductile materials.

The basis of this technology lies in the identification of the classical

* singular stresses and strains that occur at a crack tip in plane elasticity,

followed by an integration of these unrealistic fields to form a physically

meaningful, energy release rate, or crack driving energy, G: then unstable

crack propagation is predicted when G attains a critical material value,

and fatigue crack growth under cyclic loading can be estimated using a data

reduction scheme based in essence on the oscillation in VG, AVG.* While the

approach within its limitations is well understood in two dimensions it is

less so in three. Moreover configurations occur quite often in practice

that are inherently three-dimensional; for example, the intersection of a

* crack with a surface, especially in the presence of shallow residual stress

distributions. Our objective here is to further the understanding of the

Importance of such three-dimensional features within the context of LEFM.

Specifically we focus attention on cracks under transverse loading that

intersect free surfaces because of their potentially major implications in

engineering, and seek an appreciation of associated three-dimensional (3-D)

effects on the all-important energy release rate. Thus we need to identify

the local singular character present in these 3-D situations and, since C

can no longer be taken as being constant along the crack front, to assess

" Both of these predictive tools are more usually couched in terms of a
stress intensity factor K and its fluctuation under cyclic loading AK:
nonetheless the physical reasoning underlying the approach remains that
of an energy balance and K's significance stems from its equivalence to G.

. .
.. . . . * .
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its variation there. In fact the LEFM postulates of a critical value for

SG for fast fracture and of A/G governing fatigue crack growth insist that,

In 3-D configurations, we look for crack-front profiles having a constant G

if they are to be everywhere criticaZ or a constant A/G if they are to be

* associated with steady setf-simitar crack growth. That is, we need to solve

free boundary value problems to determine the shapes of the crack fronts.

The consideration of these issues is the major concern of this paper.

*Over the years a large number of contributions to the LEFM literature

• which address various aspects of the influence of three-dimensionality have

been made - see Panasyuk, Andrejkiv and Stadnik [1], [23 for reviews through

* 1981 which together cite some 500 odd related references. In commenting

*on the impact of these investigations on the issues of interest here, we

Ibegin with attempts to elucidate local singular nature which are primarily

analytical, then turn to numerical treatments of more global problems.

To fix ideas in our initial commentary we consider a generic configur-

ation entailing the normal intersection of a free surface by a crack under

transverse tension (Fig. 1). If R denotes this cracked elastic region we

have, on introducing spherical polar coordinates (p,8, ) with origin 0 at

the crack/surface intersection or crack vertex,

R ((pe,,)I 0 <p -, 0 < e < w/2, 0 < < 2w). (1)

To aid the exposition further we also introduce cylindrical polar coordinates

(r,#,z) sharing the same origin and related to (p,e,*) by

r - psine, * = *, z - pcose, (2)

on R. The key question pertaining to this configuration is what are the

possible singu ar aspects of the elastic stresses near the crack front in

the vicinity of 0, viz., as P - 0 or as r, z '- 0.

> ,&'? ''.. , .'"...".'.......... .-.-.. '.'.. ...- "" , ,-
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CRAC

Flgure 1.Coordinates for generic 3-D crack configuration.
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To address this question we first draw on the work of Aksentian [33

which expands the three-dimensional equations of elasticity in local curvi-

linear coordinates to establish that the stress behavior anywhere along the

crack front in R, except right in the upper plane (8 - v/2 or z = 0), is

governed by the same eigenvalue equation as that derived by Williams [43

for the two-dimensional case. Thus for this part of the crack front we have

the classical inverse square-root singularity,

O- O(1/Vr-) as r -1 0 (z > 0), (3)

on R. Of course there is an infinity of other eigenvalues giving rise to

eigenfunctions with stronger singularities than that of (3) which are

acceptable ZocaZ solutions. Although these singularities are usually

disregarded on the grounds that they lead to unbounded displacements, the

dislike of such physically unrealistic displacement responses does not

really constitute an argument for their exclusion in any completely for-

mulated g~obaZ problem - after all, the stresses admitted in (3) are cer-

tainly not physically appealing even though their displacements are finite.

A real reason prohibiting these more singular stresses is that there are

associated forces on plane regions of finite extent ahead of the crack that

are infinite, so that, provided we agree not to load any finite surface

within R with an infinite force, equilibrium insists that they do not par-

ticipate. Physically, it would be better still if one could argue against

the participation of the classical singular stresses too. Rather though,

the absence of any two-dimensional eigenfunction which transmits a transverse

tensile stress ahead of the crack, and does not vanish as r l 0, ensures

that the singularity in (3) is always excited in the two-dimensional setting

*Acceptable local solutions - the .,se that they satisfy the field equations

and the local homogeneous bour .ry ,inditions.



when the crack is pulled apart and means we can therefore expect its parti-

cipation in any like three-dimensional situation. Fortunately it is precisely

this singular nature which can result in a positive, finite, energy release

rate so that the behavior in (3) is quite acceptable from an LEFM point of

view.

It remains to consider, for our genetic 3-D crack configuration, the

singular character actually in the upper plane. Three analyses which inves-

tigate this are Benthem [5], Kawai, Fujitani and Kumagai [6], and Sinclair

[7). All three model their approach to some degree on Williams' separable

eigenfunction analysis [4], Benthem [53 using spherical coordinates and

* satisfying the stress-free conditions on the crack faces exactly, the stress-

free conditions on the upper surface approximately; Kawai et aZ. [63 using

the same coordinates but satisfying the crack-face cinditions approximately,

the upper surface conditions exactly; and Sinclair [7] using cylindrical

coordinates and meeting the boundary conditions in a similar way to Benthem

[5]. All three confirm the classical singular nature away from the upper

surface, as in (3). All three recover the one known stress singularity

for a Poisson's ratio v of zero - the value such that two-dimensional

solutions completely comply with the local three-dimensional requirements -

though Kawai et aZ. [63 indicate the possibility of a stronger singularity

as well for this case. And, aside from this last, all three have qualita-

tively similar behavior as the free surface is approached with

0*- O (PX I/r) as r -, 0, (4)

on R in Benthem [53, Kawai et aZ. [63, the exponent A varying from 0 to

0.17, 0 to 0.32 in [53, [63 respectively, as v ranges from 0 to 0.5, while

O- O(z2n //r) as r o 0, n - 1, 2,..., (5)
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on R in Sinclair [73, for v # 0. No completeness argument for any of the

above analyses is apparently available and in fact their difference in detail

may well be due to a lack thereof.* Nonetheless, in sum it would seem

, reasonable to expect behavior like that of (3), (4), (5) to be found in any

3-D problem which becomes two-dimensional when Poisson's ratio is zero, and

accordingly to expect a bounded energy release rate which is positive except

right in the upper free surface.

A related analytical treatment which contains the local geometry of

Fig. 1, yet attempts the ambitious task of the closed form solution to a

truly three-dimensional, global, crack problem, is furnished by Folias in

[93 and has generated some controversy - see discussion by Benthem and Koiter

*and author's closure E10]. The main source of contention is the appearance

in Folias [9] of the following dominant singular behavior in the normal

stress component az

"* k cose cos(2v+l)6
a'"o = 2v c 0nc + a s p 0, (6)

z P ps-i 2

where k is a constant (k J 0). This singularity is stronger than (4), (5)

and for v > 1/4 gives rise to unbounded displacements. As pointed out

earlier, while such displacements are perhaps physically counter-intuitive,

they are not in themselves a mathematical objection to the validity of the

elasticity solution in Folias [9], but rather raise the possibility that,

given the loading in [93, the stress in (6) does not meet equilibrium require-

ments. Indeed inspection of (6) shows this to be so, since equilibrium in the

z-direction at the free surface (e n/2) requires 3/3z of a to be null
z

there (equivalently Da /30 to be zero), and it is not (for v 1 0). Of course
z

*It might appear that the two-dimensional completeness proof of Gregory [83,

via Aksentian's argument [4], applies here for z > 0; unfortunately an addi-
tional separation-of-variables assumption is necessary in [4] so that com-

. pleteness remains unproven even away from z - 0 for v 0 0.

*2
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the method of solution construction adopted by Folias in [9] assures satis-

faction of the equilibrium requirements by his stress fields in toto, so

there must be further contributions to the stress field in [93, not to date

explicitly extracted, which combine with a of (6) to restore this compliance

and in doing so may even annihilate it[ We conclude therefore that the

singularity present at the crack/surface intersection in Folias' problem E9]

is still to be determined and consequently our expectations as to the be-

havior there remain unaltered by E9].

The investigations [5], [6], [7], [9] do have one thing in common - they

all attest to the difficulty of constructing analytical solutions for 3-D

cracks and it seems almost certain that the more complex configurations of

concern here are intractable to purely analytical approaches. As a result

we look to numerical methods and next review the accompanying literature,

starting with those contributions that are most closely connected to the

aforementioned analytical studies.

The local eigenvalue problem indicated in Fig.' 1, with geometry as in

(1) if p < 1 therein, is analyzed in Benthem [11] via finite differences and

the eigenvalues in Benthem's earlier paper E5] confirmed, the maximum dis-

crepancy between the two determinations occuring when v = 1/2 and being only

4%. Unfortunately the numerical approach in [11] does not readily admit to

more general application and probably the most obvious candidate towards

this end is the finite element method (FEM). Ba'ant and Estenssoro [12]

use a version of the finite element method on the same local geometry as in

Benthem [11]. The most distinctive aspect of the FEM in Ba~ant and

Estenssoro [12] is the representation of the fields near the crack vertex

with expressions which contain an adjustable exponent governing the singu-

larity there, the exponent being estimated by a variational

*4"...--- ..''. '... ... . .'...--... .... ".... . .. ...... . , .- -. - , . .. • . ".'



11

principle - an idea developed independently and somewhat differently by Bazant

[13] and Swedlow [143, [15]. Using a sequence of grids, Ba-ant and Extenssoro

[12] demonstrate convergence and, by extrapolating their results, also confirm

Benthem's values for the singular eigenvalue [5]. As a consequence of the

representations assumed in Ba-ant and Estenssoro [12], this confirmation does

not constitute a completeness argument for Benthem's forms in [5] but it is

quite reassuring as regards our expectations of singular behavior, hence G,

in this critical region. In addition in Ba-ant and Estenssorc [12] , intersec-

tion other than normal is considered and angles found at which the singularity

exponent becomes 1/2 (X = 0 in (4)), thus angles of intersection for a straight

inclined crack for which positive energy release rates may exist right in the

upper surface.

The success enjoyed by these local numerical analyses is not found to

the same extent in finite element treatments of more global or complete

problems which contain crack/surface intersections, although some worthwhile

attempts have been recently reported: see Yamamoto and Sumi [16], Yagawa and

Nishioka [173, [18] which use superposition; Raju and Newman [19], Sebra

Pereira [20], Tseng [21], Hilton and Kiefer [22] which use special elements.

Two requirements for reliable results in this sort of analysis are that the crack-tip

representations of field quantities be able to model both singular and regular

behavior while retaining compatibility with the fields away from the crack-

tip and that any quadrature scheme used should recognize the singular repre-

sentation adequately. To varying degrees the investigations in [16] - [22]

meet these requirements. However, all of these papers have to asswme singular

This list is not intended to be comprehensive but merely representative of
the better finite element solutions for the class of complete, elastic, 3D
crack problems considered here: we are not aware, though, of any other
markedly superior FEM analysis for a problem of this type.

r
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character a priori and, presumably because of the size of the computational

task involved in global three-dimensional geometries, none manage to carry

out the calculations on a sufficiently refined sequence of grids so as to

. establish numerical convergence - an essential demonstration in view of the

possibility of an inappropriate assumption as to singular character, and in

view of the different predictions concerning the variation in the energy

release rate in [16] - [22] with some results showing an increase in G in

the near surface, some a decrease, and still others no change. It would

seem therefore that, in the global situation, a numerical approach with a

higher analytical component might be advisable if computational efficiency

'- is to attain levels that enable convergence to be checked.

A more analytical procedure is the method of lines which integrates

" displacements exactly in their own directions and uses finite difference

approximations for their gradients in transverse directions. Application

of the method to global configurations containing cracks with normal inter-

sections of free surfaces is described in Gyekenysei and Mendelson [23].

In [23] G can be inferred to remain constant or to increase as the free

surface is approached depending on overall specimen geometry, clearly a

contradiction to the expectation expressed in (4), (5). What is not clear

in Gyekenysei and Mendelson [23] is how well the singularities in the dis-

placement derivatives are approximated by the finite differences, so that

there is some doubt as to the reliability of the results obtained by means

of this method at this time.

Another more analytical approach than FEM is the boundary integral

e equation method (BIE) which employs a Green's function to meet the field

equations exactly, thus reducing the problem to boundary condition satis-

faction on surfaces; i.e., the region to be discretized for numerics is

reduced from three dimensions in FEM to two dimensions in BIE. An early
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use of this method on a complete 3-D crack problem is that by Cruse and

Van Buren [24] and remains even today one of the more refined analyses - at

least as judged by the size of the discretization regions near the crack.

A more recent application of BIE to a problem of this class is that of Tan

and Fenner [25] which has a higher order representation of the unknowns in-

volved yet still does not take their singular behavior into account. Both

Cruse and Van Buren [24] and Tan and Fenner [25] find evidence of a decay in

the energy release rate as the free surface is approached but neither fully

confirms their findings with a convergence check on a discretization sequence.

In order to do this check, speciai integral equations that exploit a match

between a particular Green's function and a restricted class of tbree-

dimensional crack geometries may prove advantageous. Recently two such in-

tegral equation sets have been derived by Folias [26] and Smetanin and Sobol

[27]; currently though no results from their numerical analysis seem to be

available.

In the light of the preceding, this investigation uses a special set

* of integral equations developed in Sinclair [28] for an elastic half-space

weakened by a crack of finite width and infinite depth subjected to trans-

verse excitation. This integral equation set has a single physical unknown,

*is more compact than that of Folias [26] but comparable in complexity to

*that of Smetanin and Sobol [27], and has the attribute of recovering exactly

the closed form two-dimensional solution that obtains for the configuration

under the simplifying assumptions of normal intersection, uniform far-field

tension and a Poisson's ratio of zero. Furthermore, the singular nature of the

unknown in the set needs only to be dominated, not estimated precisely, to

ensure convergence, and this last concern is examined on a sequence of three

* discretizations, the finest of which provides information at distances in

advance of the crack front which are about a factor of four closer than
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the closest in Cruse and Van Buren E24]. On the other hand, little is

learned of the precise singular behavior in the crack vertex proximity from

the system. To compensate we also employ a finite element method to analyse

a finite geometry of sufficiently gross dimensions so as to simulate the

* half-space implicitly required in our integral equation development. The

FEM features an adjustable singularity exponent at the crack vertex (after

.Ba.ant and Estensscro [12], Swedlow [15]) so that the singularity there is

not completely assumed in advance; further the special crack-tip elements

I involved also contain regular fields and are compatible with host elements,

and singular quadrature is used. By comparison with the integral equation

results its convergence can be inferred. With the two numerical approaches

thus verified they can then be used to each's best advantage to study

critical crack profiles, residual stress effects, and the influence of

plate thickness.

We begin in Section 2 by stating the 3-D problems for analysis via the

integral equation and finite element approaches. In Section 3 we describe

4 the analysis, commencing with the derivation and numerics associated with

the integral equations, and closing with the development of the FEM. In

Section 4 we present results obtaiied, commencing with those which serve

to validate the overall treatment, and closing with those which quantify

selected three-dimensional effects in LEFM. Finally in Section 5 we offer

some concluding remarks.

2. Formulation of three-dimensional problems

Here we consider two companion geometries for the examination of the three-

dimensional aspects of crack/surface interactions. The first is an infinite

geometry chosen with a view to facilitating integral equation development,

i.
L-
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the second a finite geometry designed to enable comparison of an FEM treat-

ment. We start with a formal statement of the simplest problem analyzed via

integral equations and continue with a discussion of some generalizations of

this configuration to address other issues of physical importance. We then

follow the same pattern in describing the problems for finite element analysis.

One configuration amenable to integral equation development is that of an

elastic half-space, containing a crack of finite width and infinite depth,

under uniform transverse tension at infinity a* (Fig. 2). This choice is
y

not uniquely well suited to our present purpose but is sensible in that it

has a characteristic length, is subjected to opening (Mode I) excitation,

and does enable a compact set of integral equations to be subsequently de-

rived in the next section. With the development of the integral equation

system in mind we subtract a uniform transverse tension of magnitude a*
y

throughout an uncracked half-space to recover a configuration wherein the

crack is opened by a constant normal pressure equal to a*, then exploit the
y

symmetry about the crack plane to formulate the problem in rectangular

cartesian coordinates (x,y,z) on the quarter space

Q- ((x,y,z) I - < x <-, 0 < y <-, 0 < z <-}. (7)

For this quarter-space we denote the upper surface by a1Q and the surfaces

corresponding to the crack face and the connected material in the crack

plane by 32Q, a Q respectively. Thus

a Q - {(x,y,z)I - -<x < 0, 0 < y < 0, z= 01,

a2Q - {(x,y,z)j 0 < jxj < a, y = 0, 0 < z < o}, (8)

a3Q. , {(x,y,z)l a < Ixi, -, y 0 0, 0 < z < -1,

wherein a is the semi-crack length. We seek then, in general, the stresses

a a , xy' yz' Cy and displacements u, v, w as functions of x, y, z

S..........

x Z Xy"Z z

Lame
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throughout Q, satisfying: the three-dimensional stress equations of

equilibrium in the absence of body forces, on Q; the stress-displacement

relations for a homogeneous, isotropic and linear elastic continuum with

shear modulus U and Poisson's ratio v, throughout Q;* the stress-free condi-

4% tions on the upper surface,

OU T -T 0, (9)

on 8 Q; the opening-pressure stress conditions on the crack face,

a --o ° , T = 0, (10)y y xy yz

on a2Q; the symmetry conditions ahead of the crack,

""T =T = 0, v=O0, (11)

xy yz

on a 3Q; and finally the conditions at infinity which insist that the stresses

approach a plane strain state for a crack opened under constant pressure,

o - 0(1), T = 0(1), T = 0(11 as x 2 -,
xxy xz

o = 0(1), T = 0(1), rT = O(1) as y -, (12)yxy yz

a a ap + O(I), T = O(1), T = o(1) as z ,z z yz zx

on Q, where OP is the plane strain, out-of-plane, normal stress (refer, for
z

instance, Green and Zerna [303, §8.17 for details),

P 2v a rop  E 2v o _°  - Cos (*0 13, (13)

z y 12 2 2

with

r -,t(x + i(5-3i)a/2)2+y2], *t = sin (y/r1 )(1 = 0,1,2),

on a 1 Q. In particular we wish to draw from the stresses and displacements

complying with this formulation the attendant energy release rate and con-

sider three-dimensional effects thereon.

*The usual notation for stresses and displacements is employed; for details

of the field equations see, for example, Timoshenko and Goodier [29], pp. 7,
11,236.
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The energy release rate G here may be represented using any one of

several equivalent integral forms. Viewing G as the incipient local work

required to heal the direct extension of a crack in the opening mode per

*': unit length of that extension, one such integral is, after Irwin [313,

a+Sa

G-li 1 f a vdx. (14)6a: - 0 6a y

Here 8a is the extension of the crack in the x-direction through material

a
initially experiencing the tensile stress a and 6v is the opening dis-

y

placement accompanying this extension. Implicit in (14) and its equivalent

forms is a requirement on the local singuZar character so that the integra-

tion yields a finite non-trivial result. The determination of this requisite

singular nature proceeds routinely. We take the most singular aspect of the

stress distribution ay along the x-axis to be described by,
Sa A +

Sa=C(x-a)x (1+ o(1)) as x -. a ( > -), (15)

where A is the exponent characterizing the singularity and C1 a constant.

This in turn implies an associated shifted displacement of

Bv = C2 (a+6a-x))
+ l (1 + o(i)) as x - (a + 6a), (16)

C2 a constant. Then introducing the forms (15), (16) into (14) and making

the change to the variable x' - (x-a)/6a gives

lim 2A+1
G - 6a- 0 C 2 6a B(A+I,A+2), (17)

where B(A+I,A+2) is the Beta function, bounded for X > -1. Equation (17)

insists that A X - in order for G to be bounded and positive.

Also implicit in (14) is that in two dimensions G is uniform along the

crack front, whereas in three dimensions this integral represents an energy

release rate per unit Zength of crack front and its constancy is not
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assured. Thus in order that the entire crack front be critical, we cannot

assume its shape a priori but must determine it such that G is uniform.

Currently two-dimensional testing assumes, in effect, a straight crack

front to be critical and on this basis estimates the critical value G for
c

fracture, the material property one seeks essentially in fracture toughness

testing. On the one hand the attendant curvature restrictions in these tests

may result in unnecessarily discarding useful data (as in Kaufman [32]); on

the other, the average G found via two-dimensional analysis for a straight

or nearly straight crack, set equal to G at fracture, may be significantly

lower than the actual three-dimensional maximum, thereby leading to an overly

conservative estimate of this critical energy. Now the usual physical sit-

uation preceding fracture - cyclic growth up to the point of unstable crack

propagation - indicates near uniform advances of curved crack profiles (as

in, for example, Bell and Feeney [33]). Thus a more realistic calculation

, ~ of G would result if we considered these fronts, which may reasonably be
c

taken to possess constant energy release rates, and at failure, a constant

SG c . In order to state the associated free-boundary problem precisely, we

need to choose the plane in which the energy release rate is calculated to

best model the observed, approximately, self-similar, crack growth. Here

two likely candidates present themselves; normal to the crack front and

parallel to the free surface (this last actually being the direction in (14)).

To select one of these we consider the consequences of local crack advances

governed by a Paris data reduction scheme for cyclic loading. For either

direction, beginning with an assumed profile of constant G, the crack under

a Paris relation is advanced a uniform increment 6a in a single cycle directed

in the plane in which G is calculated. We see then (Fig. 3) that only a

crack advance associated with G calculated in the plane parallel to the free

surface produces a crack that retains its shape. Accordingly, we choose

%" ' "I a " . ,,. . . ... .
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Figure 3. Candidate directions of crack advance to achieve self-similar profiles.
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this plane for the calculation of the energy release rate. As a result, the

pertinent free boundary problem seeks, in addition to the stresses and dis-

placements satisfying all of our preceding requirements, to determine the

crack profile, a = a(z), such that, in light of the singularity requirement

- demanded by (17), we have,

xl1M a /(x -a)=C, (18)
x _+ Y

on a3 Q, C being a constant.

Another distinctly three-dimensional problem in LEFM that can be addressed

through a generalization of the previous integral equation formulation is the

effect on the energy release rate of a crack embedded in a non-uniform residual

stress field. In practice, one attempts to induce near-surface, compressive,

- residual stress distributions to inhibit fatigue crack initiation and propa-

gation. It is not intended here to trace the actual physical processes which

lead to these distributions, a difficuit non-linear elasto-plastic problem,

but instead we look to perform a series of numerical experiments to quantify

the LEFM implications of some presumed, representative, compressive residual

stresses. Based on typical experimental results for compressive stresses

imposed by a shot peening (see, for example, Almen and Black [34], p. 58),

we choose to represent the residual stress field as exponentially decaying

away from the free surface. More precisely, we take the residual stress

distribution on the crack face to be

r -yzla
a - -C e , (19)
y

on a Q, where the magnitude and depth of penetration of this field are governed

by the positive constants C and y respectively. The associated problem is
r

as previously stated except that the crack is now opened by the constant

" ''7 " ' '" '" '/ ". ' ,- . ". '. '. '. '. '- . . ". . . '.". .". . . ..'..."- ,. . - - , ..
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rpressure a* minus a i z*.e., (10) becomes
y

. y 0 =TX =0 , (20)Oy -y y, xy *yz

on 32Q . In an attempt to ensure no interpenetration of the opposing crack

flanks we make a nowhere positive on 32 by setting Cr equal to ao , and
y y

examine the effects of different decay rates y.

Turning to problems to be analyzed via the FEM approach, the primary

one for comparison requires that we select a finite geometry to simulate

the baseline integral equation configuration of Fig. 2. Thus we make the

finite problem large enough so that the effects of its limited extent are

negligible at the crack front. We arrive at the in-plane dimensions by con-

sidering the two-dimensional analysis of Isida E35] for a center-cracked

plate in the opening mode. In E353 a crack length to plate width ratio,

a/b, of 1/10 and a plate length to width ratio, c/b, of 2 yields a dif-

ference in the singular participation factor of less than one percent from

the corresponding two-dimensional infinite plate problem. Hence we take

these to be the dimensions here. For the out-of-pLane dimension, no two-

dimensional problem readily enables a similar sizing. We choose a plate

thickness to the crack length ratio, h/a, of 2 in an attempt to recover the

generalized plane strain solution at the plate midplane; our selection

requires subsequent checking to see if this is in fact the case. The re-

sulting geometry is subjected to a uniform uniaxial tensile load ao normal
y

to the crack plane on the plate ends (Fig. 4, not to scale).

Looking to minimize the region to be discretized ultimately in the

finite element analysis, we exploit the symmetries about the plate mid-face,

the crack plane and the plane normal to and bisecting the crack plane,

to formulate the baseline problem in rectangular coordinates (x,y,z) on

the plate octant P,

-L ,. ,+, ..:+'.+.'--,: .':. + + ,-+ ,+ .- . i , -. . ? + - -+ - ,, ,i- i - .
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Figue 4.Coordinates for the basic finite configuration.
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P = {(x,yz) 0 < x < b, 0 < y < c, 0 < z < hl, (21)

having plate upper face 1P and mid-face 32P given by

a = {(xy,z)I 0 < x < b, 0 < y < c, z = (i-l)h) (i = 1,2), (22)

* with mid-plate and outer plate edges D3P, a 4P respectively as in

31P = {(x,y,z)I x = (i-3)b, 0 < y < c, 0 < z < hl (i = 3,4), (23)

and having crack flank a5 P , crack plane connecting surface a6P, and plate

end 3 7P defined by

a P = {(x,y, z) (i-5) (7-i) a < x < (6-i) (7-i) (a-b) + b,
i 2

(24)
y = (i-6)(i-5)!, 0 < z < h) (i = 5,6,7).

* We seek then, in general, the stresses and displacements as functions of

x,y,z throughout P satisfying: the same elastic field equations as previously

outlined, throughout P; the stress boundary conditions on the loaded

end and the free crack flank,

0 = o , T T 0 and a r = = 0, (25)
Y Y xy yz y xy yz

on 3 7P, a 5P respectively; the free edge and free face conditions,

ax Txy = =0 and a = = Tyz = 0, (26)

on 3 4P, a IP respectively; the symmetry conditions on the plate mid-face

and the mid-plate edge,

T T 0, w = 0 and T = T = 0, u = 0, (27)

yz zx xy

on 3 2P , a3P respectively; and the symmetry conditions on the plane ahead of

the crack,

r T O, v = O, (28)xy yz

on D6P. In particular we wish to extract from the stresses and displacements

complying with the above, the energy release rate G as defined in (14).

Ie

Ib . . . ° • . . .
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In the selection of the finite geometry we chose the thickness ratio

*h/a so as to allow a comparison with the basic infinite problem posed. We

cannot make this choice in advance but must consider a succession of

problems, where we vary the h/a,until we obtain the desired midplane result.

" Then, in addition to determining a useful geometry for comparison, we may

examine the effects of plate thickness on the crack driving energy along the

crack front, that is, the interaction of two crack/surface intersections. With

"" the variation in G quantified, a natural extension of the FEM investigation

"* is a search for critical profiles with a constant G, to wit, profiles meeting

"- (18). This last completes the set of problems we consider.

*-- 3. Integral equation and finite element analyses

*i In this section we establish a set of integral equations for our basic infinite

3-D problem and discuss extensions of the set to accommodate the generaliza-

* tions of interest. Then we examine the issues entailed in the numerical

°* solution of such integral equation sets. Finally we describe the finite

element analysis of the companion finite 3-D problems, paying particular

*. attention to the special features involved in their treatment.

To improve the convergence of the integrals in our integral equations,

we start by modifying the basic infinite problem by removing the plane strain

. solution for a crack opened by a constant pressure O. Then the solution
y

-[ to the outstanding three-dimensional problem in essence becomes a local

free-surface correction to the two-dimensional problem. Formally the basic

*- problem statement for the infinite geometry remains intact except that: the

upper surface stress-free conditions (9) and the crack-face opening-pressure

Indeed for the integral equation set ultimately constructed here, this
removal is essential if the improper integrals involved are to converge.

. .. .
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conditions (10) become

a M P , T = 0, (29)
z z yz xz

on aiQ (ap as in (13)) and

0Yy Tx= T Z= 0, (30)Oy xy yz O,(0

on a2Q respectively, and the infinity conditions (12) are simplified with

a1Z the stresses now being o(1).

To derive integral equations for this modified problem we seek to

superimpose point loads on the quarter-space Q. Unfortunately no solutions

expressed in elementary closed forms appear to exist for such point loads.

Fortunately though, if we form the quarter-space as the intersection of two

half-spaces (Fig. 5), we have at our disposal the Boussinesq solution for a

normal point load on a half-space (the simple forms for which can be found in

Timoshenko and Goodier [29], pp. 398-402). That is, we form Q as

Q n . f H2 ,

H1 = {(xy,z)l -= < x < <, -= <(i-l)y + (2-i)z <
(31)

0 < (2-i)y + (i-1)z < w} (1=1,2),

with corresponding surfaces alH, a2H given by

aiH = {(xyz)l -M < x < ., -w < (i-l)y + (2-i)z < (32)

(2-i)y + (i-1)z - 01 (i=1,2).

* Then the symmetric superposition of four equal point loads P at x ±+,

z " +$ on 1H together with four equal point loads P at x = +X, y +*

on a 2H satisfies the field equations throughout Q and the zero shear stress

- conditions on ZlQ, a2Q' 33Q, and reflects the last plane of symmetry, the

* yz-plane: it remains to distribute P,P so as to satisfy aZ = -op on Q,iZ

' -0on a2Q, and v- 0 on DQ. We now treat each of these in turn.
2 3

.4 . . . . - ' , "" .'4 . . . . .... .. . . . . . . . .. . . . . . -
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H22

Figure 5. Intersection of two elastic half-spaces to form a quarter-space.



28

By superposition, the normal stress a induced on the symmetry plane of
z

H,, HIn a2H, in response to four Boussinesq-point loads of magnitude P

symmetrically exerted at x = ±a, z ±0 on a H is

O -PF(ct, 0;xy), (33)
:::; z

on 1 Q - H, na 2 H, where

1:22 5F(a,O;x,y) 2 [-38[ y / R+

Ti=l

(1-2v)((y 2+ 8 )(y + 2R)- Ri3)/(R 3 (y + R) 2 34)
i '. ii

Ri  E(x +- ) +2 a+ y2- (i = 1,2).

Hence if P is replaced by the loadette p(a,O) acting on the element dad8

centered on (a,01 and p(c,8) distributed throughout the quadrant

(0 < a < w, 0 < 8 < w) we have

a z-fJ p(ci,O)F(c,O;x,y)dad$, (35)

on aiQ. Since HI becomes H2 on interchanging y and z, the stress a induced

2- y
on the symmetry plane at H2, H2 n .H, in response to four point loads of

t

* magnitude P at x = +X,y - on a2H, is given by (33) with y interchanged

Swith z, P replaced by P , and a,8 by X,*- It follows then that the response

to loading p (X,V) distributed throughout (0 < X < 0 < ) is:

,y .J, '(X,*)F(x,*;xz)dxd , (36)
.. 0

on a2QUa3 = 2 ni Hn. Now combining the distribution p on 2 H with the

response to p there (35), satisfaction of the first of the outstanding

requirements implies that

z  p (xY) + p(a,8)F(a,8;xy)dada =- Jp  (37)

f zp
0
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on aiQ. Similarly satisfaction of the second implies

y- -p(xz) + J p(X,)F(x,i;xz)dxdI = 0, (38)

0

on 3 2Q. Eliminating p from (37), (38) gives the stress integral equation,N.

our first integral equation for determining the unknown p,

p(xz) - [ p(a,a)F(a,8;X,,P)dadSJF(X,P;x,z)dxdp
f-. f C (39)

00p jj (,)F ,,;x, z) dx d*,

0

on

Turning to the last of the outstanding conditions to be met, the dis-

placement condition, we observe that only the distributed loading p on aiH

contributes to the prescribed displacement component. To get this contribu-

tion we draw on the Boussinesq solution to assemble the displacement in the y-dir-

ection on the plane H 2 nal H in response to a set of four equal point loads at

x - ±a, z - ±$. Then the requirement that the response to the distribution

p be zero yields the di8pZacement integral equation, our second integral

equation in the unknown p,

JJ p( , )f(a,8;x,z)dadS 0, (40)

0

on a3Q, where
I 2 212023

f(0,0;x,z) = - 2 2 [(x + ()a)2 + (z + (- (41)

2i i=i j=l

,*. Equations (39), (40) constitute our fundamental set of Fredholm integral

"* equations in the single unknown pressure p; in essence, they provide the

local three-dimensional free-surface correction to the two-dimensional problem.

"" Before moving on to their numerical solution, some comments on certain

analytical aspects are in order.
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P2 2 2 2Observe that a is O(1/(x + y2)) on a 0 as (x + y2) - and, since the
z1-

2~ 2~ 2 2 2 2
decay of the Boussinesq stress-kernel is 0(1/(x + y + )) as (x + y + z2)

2 2
" -, the decay of the unknown p can be inferred as 0(1/(x + y )) on a2 3Q

2 2as (x + y2) -- ; under these conditions the improper integrals in equations

(39),(40) are guaranteed to be convergent. Note also that, when v = 0, ap of
z

(13) is zero, which leads to p being zero in (39), (40) and the only known

closed-form 3-D solution to (9)-(12) is recovered exactly - the instance where

the three-d4mensional solution becomes two-dimensional. Unfortunately equa-

tions (30), (40) appear resistant to the generation of further complete

analytical solutions. Nonetheless, by making successive approximations on

the unknown p - (n), commencing with the trivial f () = 0, and changing

variables by setting x-a - psinO and z - pcose, p being the distance from

the crack vertex and e the angle away from the crack front, we obtain

p(1) . e (42)

Here 0 is a function of e alone, not everywhere zero. Of course this

asymptotic treatment is incomplete and in fact on continuing the substitu-

tion, contributions from the displacement equation may result in the

cancellation of that in (41). At'this time the complete analytical asymptotic

analysis of (39),(40) is a subject of ongoing research, one on whicb we would

welcome the assistance of other investigators.

In actuality the unknown pressure p is not the quantity of greatest

physical import but rather the energy reZease rate that results from it.

In order to obtain this crack driving energy G from p we proceed as follows.

We represent G at a given depth z with Sanders' integral [36] in an xy-plane,

take advantage of the symmetry of our configuration to restrict the contour

of integration to one lying in the half-plane y > 0, then select the contour

4
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'- 2  y2 R2 ,

as a quarter-circle (x + - R x > 0, y > 0) together with its radial ray

on the y axis (x = 0, 0 < y < R). Now, provided we include the plane strain

solution for a crack opened under constant pressure together with a hydrostatic

tensile field for an uncracked half-space (a field which leaves G itself

unaltered), integrating by parts and invoking equilibrium results in the

contribution from the circular portion of the contour vanishing as the radius

of the quarter-circle tends to infinity (R c), leaving

G - +V + a )- dy, (43)J a° x az y ay

0

on x : 0. To obtain the terms in the integral of (43) we take the plane

strain and hydrostatic tensile fields as well as the stresses and displace-

ments obtained by integrating the pressure distributions p, p multiplied by

the appropriate Boussinesq kernels over the surfaces DiH, a2H respectively.

We can then use (43) to evaluate the variations in G along the crack front

when we assume a given crack-front shape; for a crack front to be critical

* though with a constant G we must solve the free-boundary problem described

earlier. The adaptation of equations (39),(40) to accommodate such a crack-

front search is straightforward and details may be found in [28].

The integral equations for assessing the effects of presumed residual

conpressive stresses can also be easily derived, essentially by following

*. the same procedure as for the basic infinite 3-D problem. That is, after

subtracting the plane strain problem to ensure convergence, superposition

of point loads to satisfy the outstanding boundary conditions yields

integral equations identical to the basic problem except equation (39) is

altered by adding a of (19) to its right-hand side.
y

For any of these preceding integral equation sets our approach to their

numericaZ solution is a simple one - a collocation procedure. In sum this
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entails taking due account of the expected singular behavior of the unknown,

transforming it so as to admit representation as a piecewise constant on

subregions of the boundary, and thereafter specializing the integral equations

to hold at the centroids of these discretization regions to generate a

square linear algebraic system of equations with integral coefficients for

the determination of the unknown.

To implement the procedure we first nondimensionalize the integral

equations by dividing the coordinates x,z and variables of integration

*+ a,S,X,p by the semi-crack length a (or lim a(z) in the event of a free

boundary problem), and the stress ap (and a for a residual stress problem)

, and the unknown pressure p by the crack opening pressure a, denoting
y

all the quantities so formed by their original symbols with a bar atop.

To regularize the new unknown p it is only necessary that we remove

an overestimate of its singular character. Recalling our earlier discussion

in the introduction it would seem likely that this could be achieved in

the basic problem by introducing a square-root singularity and accordingly

we do this here by setting

p 2 (R >1), (44)
(X- -_1)

where q is the new "regular" unknown and the particular way in which the

square-root singularity is introduced in (44) is in anticipation of a

subsequent change of variable to remove it. In addition, from our previous

remark that the decay of p is 0(1/(x 2 + z 2)) as (x2 + z2) 2 we require,

away from the origin, a further transformation on p to reflect this decay

and ensure convergence and so take

- xg -X2 -2 >>(45)-2 -2 2
(X + 2)/(2x1)

*1

"+ , . o . +-+ . .,, + "+' +,, .. . ". _. ". + ._.... I i + h I"" I ' 
+ l ' + ~ k ' 'L ' +

k '"" '+
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Of course we cannot guarantee that q of (44),(45) is indeed continuous

and should a stronger singularity participate at the crack vertex it would

not be; though we expect this is not the case, the vindication of the

. regularization in (44), (45) ultimately rests with the numerical results

found using it. In contrast we do expect q not to be continuously differ-

entiable at the crack vertex so that any discrete representation other than

a piecewise constant would not appear warranted. With this representation,

the discretization of the surfaces 32Q, a33 on which q is represented

, "proceeds as follows.

Unlike most boundary integral methods the surfaces on which our

. equations hold are not of finite extent. As a result, the initial division

of the boundary, 2Q U 33Q, is into finite regions S and infinite regions 1.

For our preliminary discretization grid or map, the limits of the finite

regions are chosen to enclose the area having more than one percent variation

. from the normal stress component a y of the plane strain solution as

estimated by the previous numerical analyses of Cruse and Van Buren [24] and

Tan and Fenner [25]. Inside the border of this region the grid is refined

near the free surface and crack front to capture the expected behavior in

the unknown q. A solution to this system is found for an initial grid

°.". and the element-to-element variation in q used as an indication of how

the grid can be rearranged/extended so as to smooth and model variations.

This partially optimized mesh is then systematically refined to study

convergence on a sequence of grids comprised of a coarse (31 boundary

elements), a medium (109), and a fine (421). To indicate the maximum

resolution the fine grid is shown in Fig. 6.

The only remaining numerical issue is the quadrature to be used to

Refer Burton [37] for a fuller account of the discretization process.

.................................,
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determine the matrix coefficients in the linear set of equations. This

quadrature must recognize the singular or near-singular behavior of the

Boussinesq response kernels as well as the singularity introduced through (44),

(45), the latter becoming smooth away from the crack front (x > 1). Thus, to

simplify the integration, no transformation is used away from x - 1+. In Fig. 6

subdomains of S, Si (i = 1-3), and 1, 17 (i = 1-5), are shown and representii
to scale the sections where the following respective transformations are used:

-: / 2 -2, - 2/-_), -2, /-2 +-2) /-2
x 1, 2 - 1), 1; z, l /z2, l/(x -- z ), l/x A consequence

of selectively transforming the unknown is that the quadrature on Sl, S3 ,

which together comprise the greater part of S, merely entails determining

the response of an elastic half-space to a constant pressure applied over

a rectangle on its surface. Hence Love's solution [38] can be used to

perform this integration exactly. The quadrature on the remainder of S,

the surface S 2 wherein the transformation (44) is applied, is undertaken

using an adaptation of the first mean value theorem which recognizes the

singularity introduced via (44). The quadrature on the infinite surfaces

is less important since the grid itself is designed so that the unknown

values associated with these regions are practically negligible, i.e.,

so that the key results should be left virtually unchanged if we set these

integrals to zero. With this in mind, the only singularity directly

handled is that occurring on 12 as a result of the transformation there,

the approach being the advertised change of variable, specifically

x 1). Thereafter all of the infinite surfaces are mappi1 I to

finite ones and a mid-point rule employed - a rule generally consistent

with the approximation underlying our discretization. For those few

instances when the untreated inverse-distance singularity in the Boussinesq

displacement kernel makes its present felt, the quadrature is confirmed

simply by applying the mid-point rule on successively smaller quadrature

0.

, o ° .- , . . . . . . . . . • , ,, . . .
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intervals.

With all of these aspects of the procedure in place the numerical

solution becomes routine since, although the coefficient matrix is neither

symmetric nor sparse, it is well-conditioned and quite amenable to reduction

by standard Gaussian elimination. While the computational effort required

is not great for the resolution gained, the results found directly are

limited to a single stress component in the crack plane and even for this

one quantity cannot reasonably be expected to quantify its singular character

very accurately. Thus it is in part in order to overcome these short-

comings, as well as to provide a verifying comparison, we next turn to our

finite element analysis.

To facilitate grid gradation our finite element approach employs two

types of regular or host elements which are mutually compatible: an

eight-node isoparametric hexahedron or brick, and a six-node isoparametric

pentahedron or wedge formed by coalescing two node-pairs in the brick

element (Figs. 7A, B). In natural coordinates ( ,r, ) the displacements
U,

U are represented by the following interpolation functions

C1 2 + c 2 +  + + C 5 E + + C+ 8n

(46)

U C1 + C2 E+ C3 C + C4 (1+ T + c 5 F-/ + c6(1+ T

Again more detail can be found in Burton [37].

**The central processing times on the time-sharing DEC-20 system at Carnegie-
Mellon being of the order of 1 minute, 20 minutes and 3 hours for the coarse
medium and fine grids respectively, with matrix reduction consuming only -8
minutes of the fine grid time.

U. V .
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A B

D

Figure 7. Elements tar the FEM analysis: A-regular hexahedron,

B-regular pentahedron, C-singular pentahedron, D-singular tetrahedron.
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where Ci (i 1-8) are vectors of constants, readily expressed in terms

of nodal values of U. Being isoparametric the respective coordinate

transformations share the same representations as in (46).

The class of crack problems at hand also requires two basic types of

8inguZar element, one with a line singularity for the crack front, the

other with a point singularity for the crack vertex. We construct these

singular elements after Tracey [39] by inserting mid-side nodes in a

regular element and letting the additional degrees of freedom model the

desired singular behavior. The advantages of this method of development
*.*

are that a singular element so formed retains its constant stress and strain

capabilities while maintaining full interelement displacement continuity

with non-singular elements. On the negative side, the coordinate trans-

formations remain those of the original regular element so that a singular

element's edges must be kept straight with the extra nodes fixed at their

midpoints in real (x,y,z) space, a subparametric element therefore.

Nevertheless, provided we abide by these restrictions, such singular elements

would seem to be among the best for present purposes.

In detail we proceed as follows. We form a ten-node pentahedron

from the regular pentahedron (Fig. 7c) and use the extra degrees of freedom

to represent the inverse square-root singularity expected at the crack

front away from the upper surface. Hence for this element

U = c1 .+ C2 + C3  + C4 (l+ T, + C + c6(1+

(47)

+ C7 (Ai)/(l+ + C8 (i+l)/(l+E + C9 (l-n/(l+ + (l+

We then collapse the two nodes on the line singularity into one to provide

=.. *

To avoid the introduction of a number of distinguishing notations, the
one nomenclature C is used in (46) and future interpolation functions

•A even though such CI are in general different.
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• a nine-node tetrahedron or pyramid (Fig. 7d) and free up the singular

*.nature by taking

U - C1 + C2 E+ C3 (1+On + C4 (l+0 + c5(1+0n

(48)

+ C6 (+0 - + C7 n(+ E) + C8 r(1+E' - ) + C9 n(l+)l ,

with X continuing its role as a singularity exponent. The corresponding

singular stress behavior generated by (47), (48) is then

0-f= O(i/r) as r + 0, Cr= 0(1/p) as p > 0, (49)

r, p being as in our initial coordinate system (Fig. 1).

To determine the singularity exponent we adopt the procedure in Swedlow

[15] wherein X becomes an additional parameter to aid in minimizing potential

energy. Of course this minimization seeks the lowest potential energy

possible using the limited representations available in the singular element

and thus may elect to model some part of the regular local fields that is not

perfectly captured by the constant strain terms with a little of the X-sing-

ularity fields: given the different natures of the two fields, such eigen-

function smearing is not seen as a major impediment to the evaluation of X

using minimization but it does serve as a warning not to expect tremendous

resolution in such determinations in complete problems that have quite a

number of different local fields excited.

The quadrature required for the minimization is performed using Gauss

rules, with singuar Gauss rules for the singular elements. The actual

schemes used are extensions to 3-D of the two-dimensional singular rule

To ensure compatibility between the displacements of (47), (48) we actually
need a further element with a line singularity, a transition element wherein

the /(l+ 0 in the C8, C10 terms is replaced by (1+) - refer Solecki [40]
for greater detail.
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used by Stern [41]. These extensions are simple in concept but somewhat

algebraically complex because of the higher-order dimension - a full

description is given in Solecki and Swedlow [423.

With the representations, minimization procedure, and quadrature in

place it remains to apply our finite element method to the class of

problems of concern here. As a result of some numerical experimentation,

the element map selected for the baseline problem is as shown in Fig. 8 and

has 375 elements including 49 line-type singular elements and 7 point-type,

1587 degrees of freedom all told, and similar resolution to the medium

grid in the integral equation analysis. Perturbations of this map

also serve to investigate curved critical crack profiles. As is character-

istic of FEM, the attendant calculations provide a wealth of information

concerning the field quantities throughout the plate from which it is

straightforward to calculate energy release rates using a path independent

integral such as the J integral (Rice [43]). Alternatively these key

quantities can be calculated using the more computationally convenient

device of virtual crack extension (as in Parks [44]), provided care is

exercised in controlling truncation errors. The results of such calculations

together with those from the integral equation analysis are considered next.

4. Verification: LEFM implications of results

Here we discuss those calculations which serve to validate our twin analyses

starting with checks on the integral equation treatment, then comparing

integral equation results with finite element, and finally looking at

CPU times for this grid are of the order of 1 hour compared to 20 minutes
for the medium grid in the integral equation approach on the same computing
system.

.........................

. . . . ** *. .. .

. .,.,,*..................**....
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other means of confirming the FEM analysis. With the resolution of the

two approaches calibrated we close the section by considering selected

results which address the issues raised earlier and are obtained from which-

ever method is deemed most advantageous computationally.
4-

A first point of corroboration of our integral equation approach is

* found in the magnitudes of the three-dimensional correction away from the

crack, namely the values of the unknown p on the infinite surfaces Ii(i=1-5).

These p-values at the collocation points on Ii are uniformly less than 2%

of ao, thereby vindicating our choice of the extent of the finite regions
y

in the discretization and supporting the justification advanced in Section 3

for performing the quadrature in the infinite regions with a simpler but

less refined scheme than in the finite. A second point of corroboration

lies in the estimates of the "regular" unknown q which are indeed numerically

consistent with a continuous unknown and, in particular, exhibit no evidence

of a stronger singularity at the crack vertex than that removed by the

transformations (44), (45), if anything indicating the opposite. These

numerical results therefore add credence to our expectation concerning

singular behavior expressed at the outset and also suggest that the numerical

values of the unknown determined via the integral equations should converge

well.

To examine convergence we consider the unknown pressure p by itself

rather than the complete stress solution including the plane strain response,

since it is for this quantity alone that convergence is of primary import-

ance. Further we confine attention to the region nearest the crack front

since this is the region wherein p's role is most significant. Fig. 9

shows coarse, medium and fine grid determinations of dimensionless pressure

p/a0 as a function of depth z/a at the closest distance from the crack front
y
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common to all three grids, x/a = 1.05, and for Poisson's ratio v = 0.3.

The curves in Fig. 9 are consistent with a numerically convergent procedure,

*the results for the medium and fine grids being almost indistinguishable

on the scale that space permits in the figure.

As the finite element analysis is less amenable, in terms of compu-

tational effort, to the further refinement necessary to establish conver-

gence, we choose instead to infer this quality by comparison with

integral equation results, again focusing on the critical region near

,
the crack front. We do this by taking the complete normal out-of-plane

stress in the crack plane from the integral equation results in conjunction with

the same stress component from the plane strain solution for a crack under far-

fieZd appZied tension, and comparing the stress so assembled with the correspond-

ing response computed using finite elements on plates whose plate thicknesses are

increased until the mid-plate answers are within 3% of the integral equation

results at the same location (the actual thickness thus found being h/a = 2).

The results as functions of depth z/a at the two lines of centroids

closest to the crack front available from the FE, x/a = 1.05, 1.14, and

for v - 0.3, are shown in Fig. 10 and represent good agreement given the

gradients present (cf. for example, the different numerical results for

the same configuration in Raju and Newman [19J, p. 34). Accordingly it

would appear that the finite element results from the grid of Fig. 8

are convergent.

Other ratifications of the FEM analysis are the perfect response

to a patch test, so confirming the interelement compatibility claimed,

and the evaluation of the energy release rate in a two-dimensional test

In this connection observe that halving element sides to form a more
refined grid, the procedure in essence adopted for the integral equations,
would lead to an FEM map of around 3000 elements and 13000 degrees of
freedom.

"......... ............ ... .................
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problem to within 0.1% using the element arrangement of Fig. 8 and the

J integral. Though not strictly a verification because of the different

physics actually present and that theoretically assumed, an experimental

comparison with the holographic interferometry study of Limtragool [45]

affords an additional appraisal of the resolution of our FEM procedure.

Fig. 11 displays w, the displacement in the direction of the crack front at the

,-.. crack vertex (see Fig. 1 for local geometry, Limtragool [45], p. 63 for

full specimen geometry), as a function of y, the surface distance transverse

to the crack, for high-strength Aluminum Alloy 6061-T6 (v = 26 x 103 MPa, v = 0.33),

both as found experimentally and via an analysis of the actual specimen geometry

using our finite element capability. The agreement shown is not as good as for

the.same displacment component's variation with the other surface distance x

:. (Limtragool [45] p. 89) but is nontheless remarkable. Also presented in

Fig. 11 is an approximate two-dimensional estimate as determined from

simple integration of the out-of-plane strain in a plane stress analysis:

the discrepancy between this last and the physical response emphasizes

the inherent three-dimensionality of the displacement plotted in Fig. 11.

With our two approaches checked we now consider the implications

of their results within the context of linear elastic fracture mechanics,

beginning with the initial step in LEFM, the identification of singular

> nature. For this activity, only the finite element approach can be

reasonably used and the results found using it for the adjustable singular-

ity exponent X of (48), (49) as a function of Poisson's ratio v are sum-

arized in Table 1, together with those of other researchers.

More comprehensive results than those reported here may be found in
Burton [37] and Solecki E46] for the integral equation and finite
element investigations respectively.
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TABLE 1

Singularity exponent at the crack vertex (A in O'= O(1/p ))

Source v = 0.0 v 0.15 v = 0.3 v= 0.4

Analytical by 0.500 0.484 0.452 0.413
Benthem E5]

Analytical by 0.50 0.48 0.43 0.37
Kawai et al. [6]

Finite difference 0.500 0.484 0.452 0.414
by Benthem Ell]

FEM by Ba-ant 0.500 0.484 0.452 0.413
& Estenssoro [12]

FEM by present 0.499 0.485 0.445 0.370
treatment

The results in Table 1 from our analysis are for a plate with h/a = 1,

there no longer being a need to simulate the infinite half-space and a

less distorted grid being preferred. An indication of a probable upper

limit on the resolution of our results is given by the A-value for v = 0

which is 0.001 in error from the known exact result of 1/2. In view

of their likely resolution for other v they should not be interpreted

as supporting the cited A-values of Kawai et al. [6] over those of

Benthem's analysis E5], but rather as being in general agreement with both,

no evidence of the stronger singularity of [6] being found in our specific

configuration. In contrast, the close agreement of the numerical work of

Benthem [113 and Baiant and Estenssoro [12] with Benthem's analytical values [5]

does support the last over the corresponding ones in Kawai et aZ. [6] by virtue

of the fact that [11], E12] treat problems especially tuned to X-determination

- .
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instead of the global problems analyzed here. The import of all the

results in Table 1 is that the energy release rate should be zero right

in the upper surface for normal crack intersection when v j 0 and, given

a continuous variation along the crack front, that G should decay near the

surface in this instance. We investigate this proposition next.

As argued previously these energy release rates are to be determined in

planes parallel to the free surface. The method favored as being the most

reliable for this determination is by means of path independent integrals in such

planes. Since the FEM analysis yields the information needed in such

evaluations more readily than the integral equation approach, we use the

finite element results to this end here. Specifically we again take h/a = 1

and use the J integral (after Rice [43]) as well as virtual crack extension

(after Parks [44]) to compute G, the former serving to check the more

computationally convenient latter. In instances in which both methods of

G-determination are applied the same results are obtained for all practical

purposes, justifying the use of the second method for intervening results.

These results as functions of depth for various Poisson's ratios are given

in Fig. 12, with G therein being normalized by its plane strain value G .• . p
Mathematically the indications are that G should be identically zero in the

free surface for v 0 0 but that it can be non-zero arbitrarily close to the

free surface: mnericaZly we find a decay of G as the free surface is approached

(z/a 4 0) with the largest drop between the maximum value and that of the

closest Gauss point to the free surface occurring, as expected, when v takes

on the maximum value considered (0.4), and being 30% of Gp.

The configuration analyzed to provide the results in Fig. 12 does not

* Regards comparing the present finite element analysis with that of Ba'ant
and Estenssoro [12],it is worth noting that [12] has the highly comparable
results of A = 0.485 for v - 0 and X = 0.380 for v = 0.4 on the fine grid

. therein prior to exploiting convergence to extrapolate, an option not open
*" to us here.

.
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coincide with any of the standard specimens used ii, the determination of

the critical energy release rate G , i.e., in fracture toughness testing

(see [47]). Nonetheless it is somewhat similar in that it entails opening

. or Mode I excitation and in that h/a 1 is the nominal ratio prescribed

for all of the standard test pieces in [47]. Accordingly we can infer

- what inaccuracies are introduced in standard toughness tests as a result of

not accounting for three-dimensional variations with the two-dimensional

plane strain value. From Fig. 12 we see that, if indeed the crack front is

perfectly straight as assumed in the standards [47], then the Gc calculated

from a two-dimensional analysis of a test could be as much as 18% less than

the real material value fvr v = 0.4 and typically would range from 4-12% smaller

(corresponding conservative errors in the critical value of the stress

intensity factor K being 9% for high v with a normal range of 2-6 %).
c

Given the overall scatter usually encountered in fracture toughness testing,

these sorts of errot are not out of line.

In the cyclic life estimation component of LEFM the import of the

results of Fig. 12 are less clear. Ignoring three-dimensional effects and

assuming a single As/G(AK) for a through crack in a plate in a cyclic life

calculation is certainly not completely correct, but since the test data

used in such calculations is usually analyzed with the scane simplifying

assumption the errors introduced by the pair of simplifications would appear

to compensate in large part. Of course, 3-D LEFM implies that for v j 0

the straight profiles associated with the varying Gs of Fig. 12 would not

propagate as such but rather take up curved profiles with constant energy

release rates: we next investigate what shapes these crack fronts must

adopt in order to compensate for the drop-offs in G displayed in Fig. 12.

These statements presume that the specimen would in fact fracture when the
three-simensional maximum G attained the critical material value G for un-c

stable crack propagation, then taking the G-value calculated from two-dimen-
sional analysis at that load as Gc gives rise to the lower values indicated.
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In view of the free surface reductions in energy release rate it would

* seem reasonable to advance the crack front away from the upper surface so as to

undercut the material ahead of the crack near the surface thereby increasing

the energy release rate there and approaching a constant G profile. Indeed

the physical evidence suggests this is the case (as in, say, Bell and Feeney

[33]) and Baiant and Estenssoro [12] theoretically determine a crack/surface

"* intersection angle which deviates from perpendicular in a manner consistent

with subsurface crack advance and which strengthens the vertex singularity

to the point of enabling a nontrivial G to exist right in the free surface.

Accordingly we look for critical crack fronts of this type here, beginning

our search by treating moderate v-values because we know the answer for V = 0

is simply the straight crack with normal intersection. In this way the

critical profiles of Fig. 13 are generated for succesively larger values of

Poisson's ratio, each profile shown therein having less than a 2% numerical

variation in G with depth z/a. These results illustrate that only a minor

amount of crack front curvature is needed to render a profile critical in

an LEFM sense, the greatest deviation from straight occurring for the

maximum v of 0.4 and representing an advance of less than 2% of the semi-

crack length a: that is, a 30% variation in G is overcome by an order of

magnitude less change in crack-front profile.

The implications of these results regarding critical G determination

or fracture toughness testing are as follows. Logically LEFM requires

that, if toughness testing is to take into account three-dimensionality,

the governing test specifications should admit limited two-sided deviations

in actual specimen crack fronts about curved profiles that are everywhere

critical like those of Fig. 13. As it happens, present standards [47]

already do this since they permit a considerable curvature and, moreover, the

allowable scatter is such that the most curved of the present profiles for

' ''-.''..''. '. '. .. , ,, ."i '- '- - "- . .. .. . .. . . . . .. ,
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v = 0.4 is placed well within this spread. Indeed, in reflecting large

amounts of testing experience, the most recent standards [47] allow far

greater curvature than the most curved profile in Fig. 13, possibly because

of the presence of some shallow, surface, residual compressive stresses. With-

out quantification of such fields, an accurate assessment as to the appropriate-

"* ness of the standards in this regard is impossible, but subsequent results

reported here do indicate that the increased curvature permitted in [47] is

qualitatively reasonable.

Implications for cyclic crack growth calculations in LEFM are less

" easily arrived at. While it is clear that only minor modifications in

crack front shape are necessary to produce the sort of profile which under-

goes self-similar growth - an implicit assumption in much of current two-

- dimensional cyclic life estimation - it is not so obvious how to simply

-adjust two-dimensional calculations to account for the overall three-dimensional

increase (here about 10%) in G, hence I/G. As mentioned earlier, provided

these increases are comparable in the calibrating test and the application,

their effects should cancel to some extent. However in instances wherein

there are significant differences between the two situations it is possible that

significant losses of accuracy could accrue. One possible type of fundamental

*difference between a data generating test specimen and the configuration to

which it is applied is in relative thickness and we consider this effect

next.

Fig. 14 presents FEM results for energy release rates normalized with

respect to the plane strain value as functions of depth for v = 0.3 and

the two finite thickness extremes treated here, the fattest being that

used to simulate the basic infinite geometry and having h/a = 2, the thinnest

having h/a = 0.3. The variation in G increases as thickness decreases with

the change from maximum to minimum going from 11% of G when h/a = 2 to 20%
p
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of G when h/a = 0.3. This trend may explain in part the disagreement be-
p

tween the integral equation and finite element results in Fig. 10 since it

is possible that the FEM results there showed a somewhat greater free-surface

reduction due to finite thickness effects, viz, the possibility that h/a = 2

does not completely simulate an infinite half-space. On the other hand

the value of G in Fig. 14 at maximum depth for h/a = 2 would seem to support

the contention that this thickness of plate is close to "infinite".

While the drop-off in G changes in Fig. 14, the average value is in-

creased by less than 3% as plate width reduces - well within the 10% increase

predicted in two-dimensions for v = 0.3 as one goes from plane strain to

plane stress - and the excess of G over the two-dimensional value (G )

remains nearly constant. Consequently little error would seem to be intro-

duced in two-dimensional cyclic life calculations from ignoring three-

dimensional elastic effects when the test specimen differs markedly from

the application geometry in thickness.

A further 3-D factor possibly affecting cyclic life calculations are

residual stresses and Fig. 15 shows the effect on the energy release rates

of the following presumed residual stress fields: superficial with r

y
decaying to 1% of a0 at z/a = 0.05 (y - 92.1 in (19)), shatlow with decayy

depth z/a - 0.3 (y = 15.4), medium with decay depth z/a = 0.6 (y = 7.7),

and deep with decay depth z/a = 1.2 (y - 3.8). These results are readily

calculated using the integral equation approach since we can now check a

local stress-fitting determination of G - the easiest for the integral equation

results - with a more reliable finite element calculation using a path

independent integral. This check for the instance of no residual stress

gives the attendant energy release rate G to within 1%. Normalizing theo

other energy release rates in the presence of residual stresses Gr by Go0

we see in Fig. 15 that sizable reductions in energy release rate occur in

the presence of residual compressive stresses, both at the surface and at

p%7,
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* depths considerably greater than the decay depths of the corresponding

residual stress field - clearly a three-dimensional effect and not something

that one would readily estimate from any approximate two-dimensional analysis.

While these calculations are for hypothetiaZ, preswned, residual, stress fields

they do serve notice of the potentially major impact of residual stresses on

cyclic life calculations even within LEFM, and the need to quantify such

fields therefore if better cyclic life estimates are to be determined.

5. Concluding remarks

The consensus emerging from the literature of a weaker singularity at a

*' normal crack/surface intersection in analyses of local problems is further

*supported by the present investigation of some global crack/surface inter-

section problems. A degree of confidence in the present results can be gained
,%

,. from the good agreement of two independent numerical analyses and the per-

formance of these two approaches with respect to a number of checks. The

two methods also provide information on the key quantity in linear elastic

*" fracture mechanics, the energy release rate, for a variety of configurations from

"" which the following conclusions may be drawn.

The three-dimensional implications of crack/surface intersections re-

'garding fracture toughness testing may reasonably be disregarded as it would

appear they can be in most present day cyclic life calculations. One

* exception to this last, however, may well be in near-surface residual stress

* effects and the idealized pilot study presented here indicates a need to

understand such fields better. In sum, but for residual stress effects, it would

seem unlikely that any results of great practical consequence would be

furnished from the further study of elastic crack/surface intersection pro-

blems. This is not to say there are not some important three-dimensional

elastic crack problems to be considered. Indeed, the apparent paradox of

cyclic crack growth at A/G levels for which the maximum Gs attained are less

. . . .. . . . . . ............. ....... . .....
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than Gc strongly suggests that this problem is three-dimensional, with

portions of the crack front departing from a simple straight profile and

- as a result experiencing energy release rates in excess of G : some

, credibility is lent to this possiblity by the present investigation since the

' rearrangements to obtain critical crack fronts may be reinterpreted as indicating

that small changes in crack profiles can lead to far larger variations in G,

whence A/G. Used with sufficient care the sort of methods developed here

may be able to investigate this suggestion and, if successful, could lead

to a physically reasoned explanation of fatigue crack growth - certainly an

-" understanding which is potentially of major practical significance.
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